

Available online at www.sciencedirect.com





Journal of Power Sources 159 (2006) 81-87

www.elsevier.com/locate/jpowsour

# Hydrogen storage of metal nitrides by a mechanochemical reaction

Yoshitsugu Kojima\*, Yasuaki Kawai, Nobuko Ohba

Toyota Central R&D Labs. Inc., Nagakute-cho, Aichi-gun, Aichi 480-1192, Japan Available online 23 May 2006

#### Abstract

Mechanochemical reaction of metal nitrides (Li<sub>3</sub>N, Ca<sub>3</sub>N<sub>2</sub>, h-BN, Mg<sub>3</sub>N<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, AlN, TiN, VN, ZrN) was performed in a planetary ball mill. We demonstrated that hydrogen  $(H_2)$  can be stored by the ball milling of their respective metal nitrides in a  $H_2$  atmosphere at 1 MPa and room temperature. The H<sub>2</sub> content of ball-milled metal nitrides was 0.2-5.0 wt.%. This reaction did not occur at ambient conditions without a mechanochemical reaction mechanism. Infrared absorption showed that the N-H stretching vibrations of the ball-milled light metal nitrides occurred at 3100–3500 cm<sup>-1</sup>. The N–H force constant of the metal imides in the ball-milled metal nitrides decreased with the metal ionic radius and the electronegativity. These results indicated that the size of the metal ion and the charge transfer from the metal to nitrogen play important roles for the force constant.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Metal nitride; Mechanochemical reaction; Hydrogen storage; Ball mill; Infrared absorption

## 1. Introduction

A polymer electrolyte fuel cell (PEFC, PEM fuel cell) is the prime power source for fuel cell vehicle (FCV). One of the most widely envisioned sources of fuel for FCV is hydrogen (H<sub>2</sub>). Therefore, it is necessary to have a storage system of H<sub>2</sub> and to have H<sub>2</sub> delivered on demand. H<sub>2</sub> can be stored in tanks as compressed or liquefied H<sub>2</sub> or by adsorption on carbon materials [1,2]. It can also be stored in H<sub>2</sub>-absorbing alloys, H<sub>2</sub>-absorbing alloys with high dissociation pressure [3,4] or as a chemical hydride, such as NaBH<sub>4</sub> [5–7], LiBH<sub>4</sub> [8,9], NaAlH<sub>4</sub> [10,11] or MgH<sub>2</sub> [12–14], as well as in an organic hydride, such as methylcyclohexane or decalin [15]. In recent years, attention has been given to metal nitrides [16–21]. Chen et al. reported that metal nitride (Li<sub>3</sub>N) absorbed and desorbed hydrogen at high temperature (468–528 K) [16]. It has been reported that the partial substitution of lithium by magnesium in the nitride/imide system (Li-Mg-N-H) destabilizes Li-N-H system [17-21]. For useable H<sub>2</sub> storage, H<sub>2</sub> absorption/desorption at ambient temperature is necessary. Recently, it has been shown that chemical reaction can occur at room temperature during mechanochemical processing [22].

0378-7753/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2006.04.024

In this paper, we demonstrate that hydrogen can be stored by the process of ball milling metal nitrides in a H<sub>2</sub> atmosphere at a pressure of 1 MPa and at room temperature.

## 2. Experimental

#### 2.1. Materials

Lithium nitride Li<sub>3</sub>N (Kojundo Chemical Laboratory Co. Ltd., Japan, molecular weight: 34.82, density:  $1.38 \,\mathrm{g}\,\mathrm{cm}^{-3}$ , purity: >99%), calcium nitride Ca<sub>3</sub>N<sub>2</sub> (Sigma–Aldrich, molecular weight: 148.25, density: 2.63 g cm<sup>-3</sup>, purity: >99%) hexagonal boron nitride h-BN (Kojundo Chemical Laboratories Co. Ltd., molecular weight: 24.82, density:  $2.25 \text{ g cm}^{-3}$ , purity: >99%), magnesium nitride Mg<sub>3</sub>N<sub>2</sub> (Sigma-Aldrich, molecular weight: 100.95, density:  $2.71 \text{ g cm}^{-3}$ , purity: >99.5%), aluminum nitride AlN (Kojundo Chemical Laboratories Co. Ltd., molecular weight: 41.0, density:  $3.26 \,\mathrm{g}\,\mathrm{cm}^{-3}$ , purity: 99.9%), silicon nitride Si<sub>3</sub>N<sub>4</sub> (Kojundo Chemical Laboratories Co. Ltd., molecular weight: 140.28, density:  $3.44 \text{ g cm}^{-3}$  purity: >99.9%), titanium nitride TiN (Kojundo Chemical Laboratories Co. Ltd., molecular weight: 61.91, density: 5.43 g cm<sup>-3</sup>, purity: 99%), vanadium nitride VN (Sigma-Aldrich, molecular weight: 64.95, density:  $6.13 \text{ g cm}^{-3}$ , purity: 99%), and zirconium nitride ZrN (Sigma-Aldrich, molecular weight: 105.23, density:  $7.09 \,\mathrm{g}\,\mathrm{cm}^{-3}$ ) were used in this experiment. Lithium amide LiNH<sub>2</sub> (Sigma-Aldrich, molecular weight: 22.96,

Corresponding author. Tel.: +81 561 63 5325; fax: +81 561 63 6137. E-mail address: kojima@mosk.tytlabs.co.jp (Y. Kojima).

density 1.17 g cm<sup>-3</sup>) and borane–ammonia complex NH<sub>3</sub>BH<sub>3</sub> (Sigma–Aldrich, molecular weight 30.87, purity 90%) were used as reference specimens. High purity H<sub>2</sub> gas (>99.99999%) was used as the reaction atmosphere. Mechanochemical reaction was performed in a planetary ball mill (Fritsch P-5). The mill container (Cr–Mo steel pot with an internal volume of 300 mL) was loaded with 5 g of metal nitride and 40 pieces of steel ball with a diameter of 9.5 mm (ball-to-powder mass ratio of 28:1). The metal nitrides were milled at 400 rpm of rotational speed and 200 rpm of revolutional speed for 20 h in a H<sub>2</sub> gas atmosphere at a pressure of 1 MPa and room temperature (296 K).

### 2.2. Characterization

ThermoNicolet AVATAR 360 E.S.P. FT-IR spectrometer with ATR system was used for IR studies in an inert atmosphere of N<sub>2</sub>. X-ray diffraction intensity curves in an inert atmosphere (Ar) were recorded with Cu K $\alpha$  radiation (50 kV, 300 mA) filtered by monochrometer using Rigaku Rint-TTR. The apertures of the first, second and third slits were 0.5, 0.5 and 0.15 mm, respectively. With the Horiba EMGA-621 Hydrogen Analyzer, H<sub>2</sub> contained in a specimen was extracted by heating at 2273 K in an inert gas (Ar). The decomposed H<sub>2</sub> was released from the specimen and was monitored by a thermal conductivity detector.

Hydrogen absorption properties of the metal nitrides were measured with a commercial pressure–composition– temperature (PCT) automatic measuring system provided by Suzuki Shokan Co. Ltd., Japan (Sievert's type apparatus).

### 3. Results and discussion

The products after ball milling of Li<sub>3</sub>N and Ca<sub>3</sub>N<sub>2</sub> were light brown, which are different from the dark brown starting materials [23]. Fig. 1 shows the H<sub>2</sub> contents for various ball-milled metal nitrides. We found that H<sub>2</sub> can be stored by the ball milling of their respective metal nitrides in a H<sub>2</sub> atmosphere at 1 MPa and room temperature. The values differ significantly between the different specimens. It is shown that the ball-milled light metal nitrides such as Li<sub>3</sub>N and Ca<sub>3</sub>N<sub>2</sub> have the H<sub>2</sub> contents above 3 wt.% while the small amounts of H<sub>2</sub> are stored after the transition metal nitrides have been milled under H<sub>2</sub> pressure



Fig. 1. H<sub>2</sub> content of different ball-milled metal nitrides.

(0.2-0.5 wt.%). The H<sub>2</sub> absorption properties at 9 MPa and room temperature for 20 h were evaluated by the Sievert's apparatus. The H<sub>2</sub> content was also monitored by a hydrogen analyzer. The measurements confirmed that the metal nitrides did not absorb H<sub>2</sub> without a mechanical milling.

The  $H_2$  absorption during milling suggests that the hydrogenation process is a two-step process as follows.  $H_2$  is absorbed on new particle surfaces created by pulverization during initial milling. The absorbed  $H_2$  reacts with metal nitrides such as  $Li_3N$  and  $Ca_3N_2$  to form metal imides, metal amides and metal hydrides under further high-energy ball impacts as shown following sections. Local temperature rise, induced by ball impacts, may also contribute to the hydrogenation reaction.

#### 3.1. Ball-milled Li<sub>3</sub>N [23]

The total H<sub>2</sub> content in ball-milled Li<sub>3</sub>N determined by a hydrogen analyzer was 5.0 wt.% after milling for 20 h. Fig. 2 presents the XRD profiles of the ball-milled Li<sub>3</sub>N, Li<sub>3</sub>N together with the data of Li<sub>2</sub>NH, LiNH<sub>2</sub>, LiH, Li<sub>2</sub>O and LiOH. The diffraction peaks of the ball-milled Li<sub>3</sub>N at  $2\theta$  of  $38.3^{\circ}$ ,  $44.5^{\circ}$ and  $64.8^{\circ}$  are raised from (111), (200) and (220) planes of LiH in which its unit cell is cubic in shape [24]. The XRD profiles also show that the ball-milled Li<sub>3</sub>N includes unreacted Li<sub>3</sub>N. The unit cell of  $Li_2NH$  is cubic in shape [24] and the unit cell of LiNH<sub>2</sub> is tetragonal in shape [24]. As the XRD curve of LiNH<sub>2</sub> phase is quite similar to that of Li<sub>2</sub>NH phase, it is difficult to characterize the hydrogenating reaction during ball milling only from the XRD curves. The strongest peak of the ball-milled Li<sub>3</sub>N in the XRD curve is at about 33° and which comes from either Li<sub>2</sub>O or LiOH. The O-H stretching vibration associated with LiOH however, was not observed in the IR spectrum. This contamination might originate from small leaks in the pulverizing system.

The structure of ball-milled Li<sub>3</sub>N was investigated by infrared spectroscopy. Fig. 3 shows the infrared absorption spectra of ball-milled Li<sub>3</sub>N, Li<sub>3</sub>N, LiNH<sub>2</sub> and Li<sub>2</sub>NH. Here, Li<sub>2</sub>NH was synthesized by decomposing LiNH<sub>2</sub> at 673 K under vacuum



Fig. 2. XRD patterns of ball-milled Li<sub>3</sub>N in H<sub>2</sub> and Li<sub>3</sub>N together with the data of LiH (JCPDS file No. 09-0189), Li<sub>2</sub>NH (JCPDS file No. 06-0417), LiNH<sub>2</sub> (JCPDS file No. 06-0418), Li<sub>2</sub>O (JCPDS file No. 12-0254) and LiOH (JCPDS file No. 32-0564). The background broad diffraction in the XRD profiles is due to a polymer film used for shielding from air and H<sub>2</sub>O.



Fig. 3. Infrared absorption spectra of ball-milled Li<sub>3</sub>N in H<sub>2</sub> and Li<sub>3</sub>N together with the data of Li<sub>2</sub>NH and LiNH<sub>2</sub>.

(0.1 Pa) for 1 h [25]. The N–H symmetric and asymmetric stretching vibrations of LiNH<sub>2</sub> occur at 3260 and 3315 cm<sup>-1</sup>, respectively [26]. The bands at 1540 and 1560 cm<sup>-1</sup> indicate the N–H deformation vibrations of the amide ion [26]. Li<sub>2</sub>NH gives rise to characteristic N–H stretching vibration at 3180 cm<sup>-1</sup> [27,28] and small absorption at 3250 cm<sup>-1</sup>. We notice that the ball-milled Li<sub>3</sub>N contains Li<sub>2</sub>NH and LiNH<sub>2</sub> due to the presence of these characteristic IR bands at 3180, 3260, 3320, 1540 and 1560 cm<sup>-1</sup>. Those bands are broad and they can be explained by the small size of the crystallites and/or disorder of the crystallites. Thus, the Infrared absorption spectra and the X-ray diffraction (XRD) intensity curves showed that the ball-milled Li<sub>3</sub>N is a mixture which includes Li<sub>3</sub>N, Li<sub>2</sub>NH and LiNH<sub>2</sub> and LiNH<sub>2</sub> mathematical compatibility.

$$Li_3N + 2H_2 \leftrightarrow Li_2NH + LiH + H_2 \tag{1}$$

$$Li_2NH + LiH + H_2 \leftrightarrow LiNH_2 + 2LiH$$
(2)

H<sub>2</sub> of 10.4 wt.% [2H<sub>2</sub>/Li<sub>3</sub>N + 2H<sub>2</sub>] can be stored in this reaction. The H<sub>2</sub> content of the ball-milled Li<sub>3</sub>N determined using the hydrogen analyzer was 5.0 wt.% and half of the theoretical value. The calculated standard enthalpy change (heat of formation) for Eq. (1) was  $-116 \text{ kJ mol}^{-1}$  H<sub>2</sub> [16]. Thermodynamic analysis was performed over the Li<sub>2</sub>NH system [Eq. (2)]. Using the van't Hoff plots, the heat of formation of the H<sub>2</sub> absorption and desorption was about  $-66 \text{ kJ mol}^{-1}$  H<sub>2</sub> [16,28]. These negative values indicate that Li<sub>3</sub>N and (Li<sub>2</sub>NH + LiH) can easily absorb hydrogen at room temperature. We speculate that insufficient H<sub>2</sub> was supplied in Li<sub>3</sub>N powder, thus unreacted Li<sub>3</sub>N remained due to the decrease in the H<sub>2</sub> content during the ball milling.

## 3.2. Ball-milled $Ca_3N_2$ [23]

The  $H_2$  content of ball-milled  $Ca_3N_2$  examined using a hydrogen analyzer was 3.2 wt.%. The structure of the ball-

milled Ca<sub>3</sub>N<sub>2</sub> was characterized by X-ray diffraction method and infrared spectroscopy. The XRD patterns of ball-milled Ca<sub>3</sub>N<sub>2</sub> and as received Ca<sub>3</sub>N<sub>2</sub>, together with the data of Ca<sub>2</sub>NH, CaNH, CaH<sub>2</sub>, Ca(NH<sub>2</sub>)<sub>2</sub> are shown in Fig. 4. Fig. 4 indicates that the ball-milled Ca<sub>3</sub>N<sub>2</sub> in H<sub>2</sub> does not contain unreacted Ca<sub>3</sub>N<sub>2</sub>. We notice that the diffraction peaks of the ball-milled Ca<sub>3</sub>N<sub>2</sub> at  $2\theta$  of 27.9°, 30.1°, 31.8°, 41.5° and 60.0° are raised from (0 1 1), (2 0 0), (1 1 1), (2 1 1), (2 0 2) planes of CaH<sub>2</sub>, in which the unit cell of CaH<sub>2</sub> is orthorhombic in shape [24]. The ball-milled Ca<sub>3</sub>N<sub>2</sub> also includes Ca<sub>2</sub>NH or CaNH because the unit cells of Ca<sub>2</sub>NH and CaNH are cubic in shape [24] and their XRD curves are similar to each other.

The crystal structures of CaNH and Ca<sub>2</sub>NH are given in Fig. 5 with respect to generating of a possible N–H bond. The crystal structure of CaNH generated from XRD indicates the presence of N–H bond, but the crystal structure of Ca<sub>2</sub>NH generated by XRD shows that Ca<sub>2</sub>NH does not have that bond. Fig. 6 shows the infrared absorption spectra of ball-milled Ca<sub>3</sub>N<sub>2</sub> and Ca<sub>3</sub>N<sub>2</sub>. The ball-milled Ca<sub>3</sub>N<sub>2</sub> now contains a stretch at 3130 cm<sup>-1</sup> which is due to the presence of CaNH. Thus the reaction of Ca<sub>3</sub>N<sub>2</sub> and



Fig. 4. XRD patterns of ball-milled  $Ca_3N_2$  in  $H_2$  and  $Ca_3N_2$  together with the data of  $CaH_2$  (JCPDS file No. 03-065-2384),  $Ca_2NH$  (JCPDS file No. 26-0308), CaNH (JCPDS file No. 01-075-0430) and  $Ca(NH_2)_2$  (JCPDS file No. 16-0476).



Fig. 5. Crystal structures of CaNH and Ca<sub>2</sub>NH.



Fig. 6. Infrared absorption spectra of ball-milled Ca<sub>3</sub>N<sub>2</sub> in H<sub>2</sub> and Ca<sub>3</sub>N<sub>2</sub>.

 $H_2$  by the mechanochemical reaction can be expressed by Eqs. (3) and (4):

 $Ca_3N_2 + 4H_2 \leftrightarrow 2CaNH + CaH_2 + 2H_2$ (3)

 $2CaNH + CaH_2 + 2H_2 \leftrightarrow Ca(NH_2)_2 + 2CaH_2$ (4)

The theoretical H<sub>2</sub> content obtained by Eqs. (3) and (4) is 5.2 wt.%  $[4H_2/(Ca_3N_2 + 4H_2)]$ . The H<sub>2</sub> content of ball-milled Ca<sub>3</sub>N<sub>2</sub> examined using a hydrogen analyzer was 3.2 wt.% and this value is a little large compared with the theoretical value of 2.7 wt.% by Eq. (3)  $[2H_2/(Ca_3N_2 + 4H_2)]$ . The difference is due to the fact that the ball-milled Ca<sub>3</sub>N<sub>2</sub> includes a small amount of Ca(NH<sub>2</sub>)<sub>2</sub>.

According to the first-principle calculations [29], it is reported that the calculated values of the heat of formation of Eqs. (3) and (4) are -115 and  $-57 \text{ kJ} \text{ mol}^{-1} \text{ H}_2$ , respectively. The large negative heat of formation indicates that CaH<sub>2</sub>, CaNH and Ca(NH<sub>2</sub>)<sub>2</sub> are stable with respect to Ca<sub>3</sub>N<sub>2</sub>, while the reaction [Eq. (4)] does not proceed easily. We assumed that the activation energy for the reaction is larger than the Li–N–H system [Eq. (2)].

# 3.3. Ball-milled $Mg_3N_2$

Fig. 7 shows the XRD patterns of ball-milled  $Mg_3N_2$  and  $Mg_3N_2$ . The unit cell of  $Mg_3N_2$  is cubic in shape [24] and the crystal structure of  $Mg_3N_2$  maintained after ball milling. The



Fig. 7. XRD patterns of ball-milled Mg<sub>3</sub>N<sub>2</sub> and Mg<sub>3</sub>N<sub>2</sub>.

ball-milled  $Mg_3N_2$  displays a broader diffraction peak. Judging from Fig. 7, the ball-milled  $Mg_3N_2$  serves the formation of the small size of the crystallites and/or disorder of the crystallites compared with  $Mg_3N_2$ .

It has been reported that MgNH gives rise to a characteristic band around  $3226 \text{ cm}^{-1}$  [30]. The N–H stretching mode of MgNH shifts to lower energy compared to Mg(NH<sub>2</sub>)<sub>2</sub> (3277, 3329 cm<sup>-1</sup>) [30]. The broad IR band of the ball-milled Mg<sub>3</sub>N<sub>2</sub> is observed at 3160 cm<sup>-1</sup> as shown in Fig. 8 and is approximately in agreement with that of MgNH. Using an analogy similar to



Fig. 8. Infrared absorption spectra of ball-milled Mg<sub>3</sub>N<sub>2</sub> and Mg<sub>3</sub>N<sub>2</sub>.



Fig. 9. XRD patterns of ball-milled h-BN and h-BN.

Eqs. (3) and (4), the hydriding reaction of  $Mg_3N_2$  is as follows [31]:

 $Mg_3N_2 + 4H_2 \leftrightarrow 2MgNH + MgH_2 + 2H_2$ (5)

 $2MgNH + MgH_2 + 2H_2 \leftrightarrow Mg(NH_2)_2 + 2MgH_2$ (6)

The experimental H<sub>2</sub> content of the ball-milled Mg<sub>3</sub>N<sub>2</sub> is 0.5 wt.%. The theoretical value is 7.4 wt.% [4H<sub>2</sub>/(Mg<sub>3</sub>N<sub>2</sub> + 4H<sub>2</sub>)]. Thus only 7% H<sub>2</sub> content was obtained. Values for the heat of formation in Eqs. (5) and (6) by the first principles calculation were -2 and -43 kJ mol<sup>-1</sup> H<sub>2</sub>, respectively [29]. The small absolute values correspond to high dissociation pressure. The high dissociation pressure and the high activation energy may prevent the hydriding reaction.

#### 3.4. Ball-milled h-BN

The XRD patterns of ball-milled h-BN and h-BN are shown in Fig. 9. As h-BN is mechanically milled, it shows diffuse diffraction peaks at  $2\theta$  of 26.7° and 42.6°, corresponding to the (002) and (100) planes for h-BN. The (002) peak of h-BN based on the interlayer spacing weakens by milling. This indicates that the form of the interlayer structure of h-BN is drastically

changed by mechanical milling. The H<sub>2</sub> content in ball-milled h-BN is 1.9 wt.%, being comparable to the value reported by Wang et al. [32] and is only 10% of the corresponding theoretical value of NH<sub>3</sub>BH<sub>3</sub> (19.6 wt.%). The infrared spectrum of the ball-milled h-BN is shown in Fig. 10. Characteristic N-H and B-H stretching vibrations of the spectrum appear at 3440 and  $2520 \text{ cm}^{-1}$ . The N–H and B–H stretching modes shift to higher energy compared with borane-ammonia complex (NH<sub>3</sub>BH<sub>3</sub>, N-H: 3302 cm<sup>-1</sup>, B-H: 2313 cm<sup>-1</sup>). Another distinct difference of ball-milled BN and NH3BH3 was observed in the B-N stretch with a strong peak at  $1326 \text{ cm}^{-1}$  for the ball-milled h-BN and a slight peak at  $1374 \text{ cm}^{-1}$  for NH<sub>3</sub>BH<sub>3</sub> [33]. The B–N absorption of ball-milled B–N resembles that of BN  $(1279 \text{ cm}^{-1})$ . In addition, out of plane B–N–B absorption at 784,  $757 \text{ cm}^{-1}$  of ball-milled h-BN and h-BN indicates the presence of B3N3 ring structure [33]. To interpret the hydride reaction, it is convenient to describe the N-H and B-H stretching vibrations in terms of addition reaction of H<sub>2</sub> at the edge of the h-BN produced by mechanical milling in a H<sub>2</sub> atmosphere as indicated in Fig. 10.

Ball-milled AlN,  $Si_3N_4$  and transition metal nitrides also showed broad diffraction peaks. These broad peaks also establish the small size of the crystallites and/or disorder of the crystallites.

## 3.5. Infrared absorption spectra of light metal nitrides

The IR bands of ball-milled AlN, and  $Si_3N_4$  also appeared at 3210 and 3330 cm<sup>-1</sup>, respectively (Fig. 11). The bands are assigned to the N–H stretching vibrations [34]. Thus we found that the infrared spectra of the ball-milled light metal nitrides show N–H stretching vibrations around 3100–3500 cm<sup>-1</sup>.

The simple N–H stretching vibrations of the metal imides in ball-milled metal nitrides can be approximated by considering the atoms as point masses linked by a spring having a force constant k and Hooke's Law. Using this simple approximation, the stretching frequency of the molecule vibration (wave number) of two atoms system would give the result:

$$\nu = k^{1/2} / (2\pi c) [1/m_{\rm N} + 1/m_{\rm H}]^{1/2}$$
(7)



Fig. 10. Infrared absorption spectra of ball-milled BN, BN and NH3BH3.



Fig. 11. Infrared absorption spectra of ball-milled AlN, AlN, ball-milled  $Si_3N_4$  and  $Si_3N_4$ .

where v is wave number(cm<sup>-1</sup>), *c* speed of light (cm s<sup>-1</sup>), *k* force constant (dyne cm<sup>-1</sup>),  $m_N$  mass for nitrogen atom (g atom<sup>-1</sup>) and  $m_H$  is mass for hydrogen atom (g atom<sup>-1</sup>). Note that this formula holds for a harmonic oscillator. The force constant *k* is expressed as

$$k = \nu^2 (4\pi^2 c^2) [m_{\rm N} m_{\rm H} / (m_{\rm H} + m_{\rm N})] \times 10^{-3} [{\rm N} \,{\rm m}^{-1}]$$
(8)

where c,  $m_N$  and  $m_H$  are  $3 \times 10^{10} \text{ cm s}^{-1}$ ,  $23.3 \times 10^{-24}$  and  $1.66 \times 10^{-24} \text{ g atom}^{-1}$ , respectively. Substituting experimental values of the wave number in Eq. (8), the force constants were given. Here, we assumed that metal imides are synthesized by the mechanochemical reaction of AlN and Si<sub>3</sub>N<sub>4</sub>.

Linde et al. reported that force constants of metal imides exhibit a linear decrease with the ionic radius [30]. Fig. 12 shows the plot of the force constant for the ball-milled metal nitrides against the ionic radius of the metal combined with nitrogen [30,35]. The force constant decreases with the radius. The force constant also depends on the electronegativity of the metal [36]. So, It was confirmed that the force constant decreased with the ionic radius at the same electronegativity (Li: 1.0, Ca: 1.0) [36]. It was reported that the N–H stretching modes in IR spectra of LiNH<sub>2</sub> were shifted to higher energy as a result of the coordination by Li<sup>+</sup> ion and the repulsion of neighboring anions [26]. A larger sized cation gives a smaller N–H bond force constant because of the longer bond length between N and H by the



Fig. 12. Ionic radius dependence of force constant for ball-milled metal nitrides.

weakened repulsion from protons of neighboring imide ions. Li and Mg have similar ionic radius (Li: 0.068 nm, Mg: 0.065 nm), but the higher electronegativity of Mg than that of Li provides smaller force constant. This result indicates that the control of the charge transfer from a cation to N–H leads to a small N–H bond force constant.

A dramatic reduction in hydrogen desorption temperatures were observed in the Li–Mg–N–H and Li–Ca–N–H systems compared with Li–N–H system [17–20]. Generally, a bond energy U is proportional to a force constant k [37]:

$$U \propto k$$
 (9)

Thus, partial cation substitutions such as Mg<sup>2+</sup> and Ca<sup>2+</sup> using larger electronegativity and ionic radius may provide lower hydrogen desorption temperature in Li–Mg–N–H and Li–Ca–N–H systems based on their weak N–H bond energy.

## 4. Conclusions

Hydrogen can be stored by a mechanochemical reaction of their respective metal nitrides in a H<sub>2</sub> atmosphere at room temperature. The H<sub>2</sub> content of ball-milled metal nitrides were 0.2–5 wt.%. Infrared absorption showed that the N–H stretching vibration of the ball-milled light metal nitrides occurred around  $3100-3500 \text{ cm}^{-1}$ . It was indicated that the size of the metal ion and the charge transfer from the metal to nitrogen play important roles for the force constant.

#### Acknowledgements

The authors are greatly indebted to Dr. G.J. Shafer, Y. Kondo, M. Aoki, T. Noritake, Dr. K. Miwa and Dr. S. Towata of the Toyota Central R&D Labs. Inc., for their help and discussion.

## References

- [1] R. Chahine, T.K. Bose, Int. J. Hydrogen Energy 19 (1994) 161-164.
- [2] Y. Kojima, N. Suzuki, Appl. Phys. Lett. 84 (2004) 4113–4115.
- [3] Y. Kojima, Y. Kawai, S. Towata, T. Matsunaga, T. Shinozawa, M. Kimbara, Materials and Technology for Hydrogen Storage and Generation, Materials Research Society Symposium Proceedings, 28–31 March, 2005 (in preparation).;

Y. Kojima, Y. Kawai, S. Towata, T. Matsunaga, T. Shinozawa, M. Kimbara, Collected Abstracts of the 2004 Autumn Meeting of the Japan Institute of Metals, p. 157.

- [4] D. Mori, N. Kobayashi, T. Matsunaga, K. Toh, Y. Kojima, Mater. Jpn. 44 (2005) 257.
- [5] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, M. Binder, J. Power Sources 85 (2000) 186–189.
- [6] Y. Kojima, K. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, H. Hayashi, Int. J. Hydrogen Energy 27 (2002) 1029–1034.
- [7] Z.P. Li, B.H. Liu, K. Arai, N. Morigazaki, S. Suda, J. Alloys Compd. 356–357 (2003) 469–474.
- [8] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, C. Emmenegger, J. Power Sources 118 (2003) 1–2.
- [9] Y. Kojima, Y. Kawai, M. Kimbara, H. Nakanishi, S. Matsumoto, Int. J. Hydrogen Energy 29 (2004) 1213–1217.
- [10] B. Bogdanović, M. Schwickardi, J. Alloys Compd. 253-254 (1997) 1-9.
- [11] M. Fichtner, J. Engel, O. Fuhr, O. Kircher, O. Rubner, Mater. Sci. Eng. B 108 (2004) 42–47.
- [12] Y. Kojima, K. Suzuki, Y. Kawai, J. Mater. Sci. Lett. 39 (2004) 2227–2229.

- [13] Y. Kojima, Y. Kawai, T. Haga, in: T. Vogt, R. Stumpf, M. Heben, I. Robertson (Eds.), Symposium N Materials for Hydrogen Storage, Materials Research Society Symposium Proceedings, 2004, p. 837.
- [14] N. Hanada, T. Ichikawa, H. Fujii, J. Phys. Chem. B 109 (2005) 7188-7194.
- [15] E. Newson, T. Haueter, P. Hottinger, F. Von Roth, G.W.H. Scherer, T.H. Schucan, Int. J. Hydrogen Energy 23 (1998) 905–909.
- [16] P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, Nature 420 (2002) 302-304.
- [17] Y. Nakamori, S. Orimo, J. Alloys Compd. 370 (2004) 271–275.
- [18] H.Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe, H. Fujii, J. Phys. Chem. B 108 (2004) 8763–8765.
- [19] W. Luo, J. Alloys Compd. 381 (2004) 284-287.
- [20] S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towata, Appl. Phys. A 79 (2004) 1765–1767.
- [21] Z. Xiong, G. Wu, J. Hu, P. Chen, Adv. Mater. 16 (2004) 1522-1525.
- [22] V.P. Balema, J.W. Wiench, M. Pruski, V.K. Pecharsky, J. Am. Chem. Soc. 124 (2002) 6244–6245.
- [23] Y. Kojima, Y. Kawai, Chem. Commun. (2004) 2210-2211.
- [24] T.M. Kahmer (Publication Manager), W.F. McClune (Editor-in-Chief), S.N. Kabekkodu (Editor of Calculated Patterns), H.E. Clark (Staff Scientist), Powder Diffraction File, International Centre for Diffraction Data (JCPDS), Pennsylvania, USA, 2004.
- [25] T. Ichikawa, S. Isobe, N. Hanada, H. Fujii, J. Alloys Compd. 365 (2004) 271–276.

- [26] J.-P.O. Bohger, R.R. Eβman, H. Jacobs, J. Molecular Struct. 348 (1995) 325–328.
- [27] P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, J. Phys. Chem. B 107 (2003) 10967–10970.
- [28] Y. Kojima, Y. Kawai, J. Alloys Compd. 395 (2005) 236-239.
- [29] Report of the New Energy and Industrial Technology Development Organization (NEDO), Basic Technology Development Project for Hydrogen Safety and Utilization, Developments of lithium-based hydrogen storage materials for fuel cell vehicles, 04000549-0, 2003–2004.
- [30] V.G. Linde, R. Juza, Anorg. Allg. Chem. 409 (1974) 199-214.
- [31] Y. Nakamori, G. Kitahara, S. Orimo, J. Power Sources 138 (2004) 309-312.
- [32] P. Wang, S. Orimo, T. Matsushima, H. Fujii, Appl. Phys. Lett. 80 (2002) 318–319.
- [33] D.P. Kim, K.T. Moon, J.G. Kho, J. Economy, C. Gervais, F. Babonneau, Polym. Adv. Technol. 10 (1999) 702–710.
- [34] L.J. Bellamy, The Infra-red Spectra of Complex Molecules, Chapman and Hall, London, 1975.
- [35] C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley & Sons, New York, 1996.
- [36] L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1960.
- [37] K. Bin-ran Kisohen II, The Chemical Society of Japan, 5th ed., Maruzen, Tokyo, 2004, p. II-741.